160 research outputs found

    Immune DNA signature of T-cell infiltration in breast tumor exomes.

    Get PDF
    Tumor infiltrating lymphocytes (TILs) have been associated with favorable prognosis in multiple tumor types. The Cancer Genome Atlas (TCGA) represents the largest collection of cancer molecular data, but lacks detailed information about the immune environment. Here, we show that exome reads mapping to the complementarity-determining-region 3 (CDR3) of mature T-cell receptor beta (TCRB) can be used as an immune DNA (iDNA) signature. Specifically, we propose a method to identify CDR3 reads in a breast tumor exome and validate it using deep TCRB sequencing. In 1,078 TCGA breast cancer exomes, the fraction of CDR3 reads was associated with TILs fraction, tumor purity, adaptive immunity gene expression signatures and improved survival in Her2+ patients. Only 2/839 TCRB clonotypes were shared between patients and none associated with a specific HLA allele or somatic driver mutations. The iDNA biomarker enriches the comprehensive dataset collected through TCGA, revealing associations with other molecular features and clinical outcomes

    PinAPL-Py: A comprehensive web-application for the analysis of CRISPR/Cas9 screens.

    Get PDF
    Large-scale genetic screens using CRISPR/Cas9 technology have emerged as a major tool for functional genomics. With its increased popularity, experimental biologists frequently acquire large sequencing datasets for which they often do not have an easy analysis option. While a few bioinformatic tools have been developed for this purpose, their utility is still hindered either due to limited functionality or the requirement of bioinformatic expertise. To make sequencing data analysis of CRISPR/Cas9 screens more accessible to a wide range of scientists, we developed a Platform-independent Analysis of Pooled Screens using Python (PinAPL-Py), which is operated as an intuitive web-service. PinAPL-Py implements state-of-the-art tools and statistical models, assembled in a comprehensive workflow covering sequence quality control, automated sgRNA sequence extraction, alignment, sgRNA enrichment/depletion analysis and gene ranking. The workflow is set up to use a variety of popular sgRNA libraries as well as custom libraries that can be easily uploaded. Various analysis options are offered, suitable to analyze a large variety of CRISPR/Cas9 screening experiments. Analysis output includes ranked lists of sgRNAs and genes, and publication-ready plots. PinAPL-Py helps to advance genome-wide screening efforts by combining comprehensive functionality with user-friendly implementation. PinAPL-Py is freely accessible at http://pinapl-py.ucsd.edu with instructions and test datasets

    A minimal promoter for TFIIIC-dependent in vitro transcription of snoRNA and tRNA genes by RNA polymerase III.

    Get PDF
    The Saccharomyces cerevisiae SNR52 gene is unique among the snoRNA coding genes in being transcribed by RNA polymerase III. The primary transcript of SNR52 is a 250-nucleotide precursor RNA from which a long leader sequence is cleaved to generate the mature snR52 RNA. We found that the box A and box B sequence elements in the leader region are both required for the in vivo accumulation of the snoRNA. As expected box B, but not box A, was absolutely required for stable TFIIIC, yet in vitro. Surprisingly, however, the box B was found to be largely dispensable for in vitro transcription of SNR52, whereas the box A-mutated template effectively recruited TFIIIB; yet it was transcriptionally inactive. Even in the complete absence of box B and both upstream TATA-like and T-rich elements, the box A still directed efficient, TFIIIC-dependent transcription. Box B-independent transcription was also observed for two members of the tRNA(Asn)(GTT) gene family, but not for two tRNA(Pro)(AGG) gene copies. Fully recombinant TFIIIC supported box B-independent transcription of both SNR52 and tRNA(Asn) genes, but only in the presence of TFIIIB reconstituted with a crude B'' fraction. Non-TFIIIB component(s) in this fraction were also required for transcription of wild-type SNR52. Transcription of the box B-less tRNA(Asn) genes was strongly influenced by their 5'-flanking regions, and it was stimulated by TBP and Brf1 proteins synergistically. The box A can thus be viewed as a core TFIIIC-interacting element that, assisted by upstream TFIIIB-DNA contacts, is sufficient to promote class III gene transcription

    Biomarkers of Endocannabinoid System Activation in Severe Obesity

    Get PDF
    Obesity is a worldwide epidemic, and severe obesity is a risk factor for many diseases, including diabetes, heart disease, stroke, and some cancers. Endocannabinoid system (ECS) signaling in the brain and peripheral tissues is activated in obesity and plays a role in the regulation of body weight. The main research question here was whether quantitative measurement of plasma endocannabinoids, anandamide, and related N-acylethanolamines (NAEs), combined with genotyping for mutations in fatty acid amide hydrolase (FAAH) would identify circulating biomarkers of ECS activation in severe obesity.Plasma samples were obtained from 96 severely obese subjects with body mass index (BMI) of > or = 40 kg/m(2), and 48 normal weight subjects with BMI of < or = 26 kg/m(2). Triple-quadrupole mass spectroscopy methods were used to measure plasma ECS analogs. Subjects were genotyped for human FAAH gene mutations. The principal analysis focused on the FAAH 385 C-->A (P129T) mutation by comparing plasma ECS metabolite levels in the FAAH 385 minor A allele carriers versus wild-type C/C carriers in both groups. The main finding was significantly elevated mean plasma levels of anandamide (15.1+/-1.4 pmol/ml) and related NAEs in study subjects that carried the FAAH 385 A mutant alleles versus normal subjects (13.3+/-1.0 pmol/ml) with wild-type FAAH genotype (p = 0.04), and significance was maintained after controlling for BMI.Significantly increased levels of the endocannabinoid anandamide and related NAEs were found in carriers of the FAAH 385 A mutant alleles compared with wild-type FAAH controls. This evidence supports endocannabinoid system activation due to the effect of FAAH 385 mutant A genotype on plasma AEA and related NAE analogs. This is the first study to document that FAAH 385 A mutant alleles have a direct effect on elevated plasma levels of anandamide and related NAEs in humans. These biomarkers may indicate risk for severe obesity and may suggest novel ECS obesity treatment strategies

    Genomics in 2011: challenges and opportunities

    Get PDF
    As we come to the end of 2011, Genome Biology has asked some members of our Editorial Board for their views on the state of play in genomics. What was their favorite paper of 2011? What are the challenges in their particular research area? Who has had the biggest influence on their careers? What advice would they give to young researchers embarking on a career in research

    Detection of low prevalence somatic mutations in solid tumors with ultra-deep targeted sequencing

    Get PDF
    Ultra-deep targeted sequencing (UDT-Seq) can identify subclonal somatic mutations in tumor samples. Early assays' limited breadth and depth restrict their clinical utility. Here, we target 71 kb of mutational hotspots in 42 cancer genes. We present novel methods enhancing both laboratory workflow and mutation detection. We evaluate UDT-Seq true sensitivity and specificity (> 94% and > 99%, respectively) for low prevalence mutations in a mixing experiment and demonstrate its utility using six tumor samples. With an improved performance when run on the Illumina Miseq, the UDT-Seq assay is well suited for clinical applications to guide therapy and study clonal selection in heterogeneous samples
    • …
    corecore